Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Psychiatr Res ; 162: 79-87, 2023 06.
Article in English | MEDLINE | ID: covidwho-2295339

ABSTRACT

BACKGROUND: Currently, there is increasing evidence from clinic, epidemiology, as well as neuroimaging, demonstrating neuropsychiatric abnormalities in COVID-19, however, whether there were associations between brain changes caused by COVID-19 and genetic susceptibility of psychiatric disorders was still unknown. METHODS: In this study, we performed a meta-analysis to investigate these associations by combing single-cell RNA sequencing datasets of brain tissues of COVID-19 and genome-wide association study summary statistics of psychiatric disorders. RESULTS: The analysis demonstrated that among ten psychiatric disorders, gene expression perturbations implicated by COVID-19 in excitatory neurons of choroid plexus were significantly associated with schizophrenia. CONCLUSIONS: Our analysis might provide insights for the underlying mechanism of the psychiatric consequence of COVID-19.


Subject(s)
COVID-19 , Mental Disorders , Humans , Genome-Wide Association Study/methods , Mental Disorders/genetics , Genetic Predisposition to Disease/genetics , Brain/diagnostic imaging , Brain/metabolism , Gene Expression , Polymorphism, Single Nucleotide
2.
BMC Med ; 20(1): 314, 2022 08 23.
Article in English | MEDLINE | ID: covidwho-2002177

ABSTRACT

BACKGROUND: Whether a genetic predisposition to psychiatric disorders is associated with coronavirus disease 2019 (COVID-19) is unknown. METHODS: Our analytic sample consisted of 287,123 white British participants in UK Biobank who were alive on 31 January 2020. We performed a genome-wide association study (GWAS) analysis for each psychiatric disorder (substance misuse, depression, anxiety, psychotic disorder, and stress-related disorders) in a randomly selected half of the study population ("base dataset"). For the other half ("target dataset"), the polygenic risk score (PRS) was calculated as a proxy of individuals' genetic predisposition to a given psychiatric phenotype using discovered genetic variants from the base dataset. Ascertainment of COVID-19 was based on the Public Health England dataset, inpatient hospital data, or death registers in UK Biobank. COVID-19 cases from hospitalization records or death records were considered "severe cases." The association between the PRS for psychiatric disorders and COVID-19 risk was examined using logistic regression. We also repeated PRS analyses based on publicly available GWAS summary statistics. RESULTS: A total of 143,562 participants (including 10,868 COVID-19 cases) were used for PRS analyses. A higher genetic predisposition to psychiatric disorders was associated with an increased risk of any COVID-19 and severe COVID-19. The adjusted odds ratio (OR) for any COVID-19 was 1.07 (95% confidence interval [CI] 1.02-1.13) and 1.06 (95% CI 1.01-1.11) among individuals with a high genetic risk (above the upper tertile of the PRS) for substance misuse and depression, respectively, compared with individuals with a low genetic risk (below the lower tertile). Slightly higher ORs were noted for severe COVID-19, and similar result patterns were obtained in analyses based on publicly available GWAS summary statistics. CONCLUSIONS: Our findings suggest a potential role of genetic factors in the observed phenotypic association between psychiatric disorders and COVID-19. Our data underscore the need for increased medical surveillance for this vulnerable population during the COVID-19 pandemic.


Subject(s)
COVID-19 , Mental Disorders , Substance-Related Disorders , COVID-19/epidemiology , COVID-19/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Mental Disorders/epidemiology , Mental Disorders/genetics , Multifactorial Inheritance , Pandemics , Risk Factors , Substance-Related Disorders/epidemiology
3.
Front Immunol ; 13: 798538, 2022.
Article in English | MEDLINE | ID: covidwho-1699559

ABSTRACT

Existing evidence demonstrates that coronavirus disease 2019 (COVID-19) leads to psychiatric illness, despite its main clinical manifestations affecting the respiratory system. People with mental disorders are more susceptible to COVID-19 than individuals without coexisting mental health disorders, with significantly higher rates of severe illness and mortality in this population. The incidence of new psychiatric diagnoses after infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is also remarkably high. SARS-CoV-2 has been reported to use angiotensin-converting enzyme-2 (ACE2) as a receptor for infecting susceptible cells and is expressed in various tissues, including brain tissue. Thus, there is an urgent need to investigate the mechanism linking psychiatric disorders to COVID-19. Using a data set of peripheral blood cells from patients with COVID-19, we compared this to data sets of whole blood collected from patients with psychiatric disorders and used bioinformatics and systems biology approaches to identify genetic links. We found a large number of overlapping immune-related genes between patients infected with SARS-CoV-2 and differentially expressed genes of bipolar disorder (BD), schizophrenia (SZ), and late-onset major depressive disorder (LOD). Many pathways closely related to inflammatory responses, such as MAPK, PPAR, and TGF-ß signaling pathways, were observed by enrichment analysis of common differentially expressed genes (DEGs). We also performed a comprehensive analysis of protein-protein interaction network and gene regulation networks. Chemical-protein interaction networks and drug prediction were used to screen potential pharmacologic therapies. We hope that by elucidating the relationship between the pathogenetic processes and genetic mechanisms of infection with SARS-CoV-2 with psychiatric disorders, it will lead to innovative strategies for future research and treatment of psychiatric disorders linked to COVID-19.


Subject(s)
Bipolar Disorder/genetics , COVID-19/pathology , Depressive Disorder, Major/genetics , Mental Disorders/epidemiology , Protein Interaction Maps/genetics , Schizophrenia/genetics , COVID-19/epidemiology , Comorbidity , Gene Expression Profiling , Humans , Mental Disorders/genetics , SARS-CoV-2/immunology , Severity of Illness Index
4.
J Transl Med ; 19(1): 230, 2021 05 31.
Article in English | MEDLINE | ID: covidwho-1280592

ABSTRACT

BACKGROUND: Infections are a major disease burden worldwide. While they are caused by external pathogens, host genetics also plays a part in susceptibility to infections. Past studies have reported diverse associations between human leukocyte antigen (HLA) alleles and infections, but many were limited by small sample sizes and/or focused on only one infection. METHODS: We performed an immunogenetic association study examining 13 categories of severe infection (bacterial, viral, central nervous system, gastrointestinal, genital, hepatitis, otitis, pregnancy-related, respiratory, sepsis, skin infection, urological and other infections), as well as a phenotype for having any infection, and seven classical HLA loci (HLA-A, B, C, DPB1, DQA1, DQB1 and DRB1). Additionally, we examined associations between infections and specific alleles highlighted in our previous studies of psychiatric disorders and autoimmune disease, as these conditions are known to be linked to infections. RESULTS: Associations between HLA loci and infections were generally not strong. Highlighted associations included associations between DQB1*0302 and DQB1*0604 and viral infections (P = 0.002835 and P = 0.014332, respectively), DQB1*0503 and sepsis (P = 0.006053), and DQA1*0301 with "other" infections (a category which includes infections not included in our main categories e.g. protozoan infections) (P = 0.000369). Some HLA alleles implicated in autoimmune diseases showed association with susceptibility to infections, but the latter associations were generally weaker, or with opposite trends (in the case of HLA-C alleles, but not with alleles of HLA class II genes). HLA alleles associated with psychiatric disorders did not show association with susceptibility to infections. CONCLUSIONS: Our results suggest that classical HLA alleles do not play a large role in the etiology of severe infections. The discordant association trends with autoimmune disease for some alleles could contribute to mechanistic theories of disease etiology.


Subject(s)
HLA-A Antigens , Mental Disorders , Alleles , Gene Frequency , Genetic Predisposition to Disease , HLA-A Antigens/genetics , HLA-DQ beta-Chains/genetics , HLA-DRB1 Chains/genetics , Haplotypes , Humans , Mental Disorders/genetics
5.
Signal Transduct Target Ther ; 6(1): 183, 2021 05 17.
Article in English | MEDLINE | ID: covidwho-1230872

ABSTRACT

CK2 is a constitutively active Ser/Thr protein kinase, which phosphorylates hundreds of substrates, controls several signaling pathways, and is implicated in a plethora of human diseases. Its best documented role is in cancer, where it regulates practically all malignant hallmarks. Other well-known functions of CK2 are in human infections; in particular, several viruses exploit host cell CK2 for their life cycle. Very recently, also SARS-CoV-2, the virus responsible for the COVID-19 pandemic, has been found to enhance CK2 activity and to induce the phosphorylation of several CK2 substrates (either viral and host proteins). CK2 is also considered an emerging target for neurological diseases, inflammation and autoimmune disorders, diverse ophthalmic pathologies, diabetes, and obesity. In addition, CK2 activity has been associated with cardiovascular diseases, as cardiac ischemia-reperfusion injury, atherosclerosis, and cardiac hypertrophy. The hypothesis of considering CK2 inhibition for cystic fibrosis therapies has been also entertained for many years. Moreover, psychiatric disorders and syndromes due to CK2 mutations have been recently identified. On these bases, CK2 is emerging as an increasingly attractive target in various fields of human medicine, with the advantage that several very specific and effective inhibitors are already available. Here, we review the literature on CK2 implication in different human pathologies and evaluate its potential as a pharmacological target in the light of the most recent findings.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Cardiovascular Diseases , Casein Kinase II , Cystic Fibrosis , Eye Diseases , Mental Disorders , Protein Kinase Inhibitors/therapeutic use , SARS-CoV-2 , COVID-19/enzymology , COVID-19/genetics , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/enzymology , Cardiovascular Diseases/genetics , Casein Kinase II/antagonists & inhibitors , Casein Kinase II/genetics , Casein Kinase II/metabolism , Cystic Fibrosis/drug therapy , Cystic Fibrosis/enzymology , Cystic Fibrosis/genetics , Eye Diseases/drug therapy , Eye Diseases/enzymology , Eye Diseases/genetics , Humans , Mental Disorders/drug therapy , Mental Disorders/enzymology , Mental Disorders/genetics , Mutation , Phosphorylation , Signal Transduction/drug effects , Signal Transduction/genetics
6.
Transl Psychiatry ; 11(1): 210, 2021 04 08.
Article in English | MEDLINE | ID: covidwho-1174643

ABSTRACT

Observational studies have suggested bidirectional associations between psychiatric disorders and COVID-19 phenotypes, but results of such studies are inconsistent. Mendelian Randomization (MR) may overcome the limitations of observational studies, e.g., unmeasured confounding and uncertainties about cause and effect. We aimed to elucidate associations between neuropsychiatric disorders and COVID-19 susceptibility and severity. To that end, we applied a two-sample, bidirectional, univariable, and multivariable MR design to genetic data from genome-wide association studies (GWASs) of neuropsychiatric disorders and COVID-19 phenotypes (released in January 2021). In single-variable Generalized Summary MR analysis, the most significant and only Bonferroni-corrected significant result was found for genetic liability to BIP-SCZ (a combined GWAS of bipolar disorder and schizophrenia as cases vs. controls) increasing risk of COVID-19 (OR = 1.17, 95% CI, 1.06-1.28). However, we found a significant, positive genetic correlation between BIP-SCZ and COVID-19 of 0.295 and could not confirm causal or horizontally pleiotropic effects using another method. No genetic liabilities to COVID-19 phenotypes increased the risk of (neuro)psychiatric disorders. In multivariable MR using both neuropsychiatric and a range of other phenotypes, only genetic instruments of BMI remained causally associated with COVID-19. All sensitivity analyses confirmed the results. In conclusion, while genetic liability to bipolar disorder and schizophrenia combined slightly increased COVID-19 susceptibility in one univariable analysis, other MR and multivariable analyses could only confirm genetic underpinnings of BMI to be causally implicated in COVID-19 susceptibility. Thus, using MR we found no consistent proof of genetic liabilities to (neuro)psychiatric disorders contributing to COVID-19 liability or vice versa, which is in line with at least two observational studies. Previously reported positive associations between psychiatric disorders and COVID-19 by others may have resulted from statistical models incompletely capturing BMI as a continuous covariate.


Subject(s)
COVID-19/complications , Mendelian Randomization Analysis , Mental Disorders/complications , COVID-19/diagnosis , COVID-19/genetics , Genome-Wide Association Study , Humans , Mental Disorders/genetics , Risk Factors
7.
Transl Psychiatry ; 11(1): 160, 2021 03 15.
Article in English | MEDLINE | ID: covidwho-1135651

ABSTRACT

Psychiatric symptoms are seen in some COVID-19 patients, as direct or indirect sequelae, but it is unclear whether SARS-CoV-2 infection interacts with underlying neuronal or psychiatric susceptibilities. Such interactions might arise from COVID-19 immune responses, from infection of neurons themselves or may reflect social-psychological causes. To clarify this we sought the key gene expression pathways altered in COVID-19 also affected in bipolar disorder, post-traumatic stress disorder (PTSD) and schizophrenia, since this may identify pathways of interaction that could be treatment targets. We performed large scale comparisons of whole transcriptome data and immune factor transcript data in peripheral blood mononuclear cells (PBMC) from COVID-19 patients and patients with psychiatric disorders. We also analysed genome-wide association study (GWAS) data for symptomatic COVID-19 patients, comparing GWAS and whole-genome sequence data from patients with bipolar disorder, PTSD and schizophrenia patients. These studies revealed altered signalling and ontology pathways shared by COVID-19 patients and the three psychiatric disorders. Finally, co-expression and network analyses identified gene clusters common to the conditions. COVID-19 patients had peripheral blood immune system profiles that overlapped with those of patients with psychiatric conditions. From the pathways identified, PTSD profiles were the most highly correlated with COVID-19, perhaps consistent with stress-immune system interactions seen in PTSD. We also revealed common inflammatory pathways that may exacerbate psychiatric disorders, which may support the usage of anti-inflammatory medications in these patients. It also highlights the potential clinical application of multi-level dataset studies in difficult-to-treat psychiatric disorders in this COVID-19 pandemic.


Subject(s)
Bipolar Disorder/genetics , COVID-19/genetics , Schizophrenia/genetics , Stress Disorders, Post-Traumatic/genetics , Bipolar Disorder/immunology , COVID-19/immunology , Comorbidity , Gene Expression Profiling , Gene Ontology , Gene Regulatory Networks , Genome-Wide Association Study , Genomics , Humans , Immunity/genetics , Inflammation/genetics , Mental Disorders/genetics , Mental Disorders/immunology , SARS-CoV-2 , Schizophrenia/immunology , Signal Transduction/genetics , Stress Disorders, Post-Traumatic/immunology , Whole Genome Sequencing
8.
Brain Behav Immun ; 91: 731-739, 2021 01.
Article in English | MEDLINE | ID: covidwho-1064859

ABSTRACT

The human leukocyte antigen (HLA) is a complex genetic system that encodes proteins which predominantly regulate immune/inflammatory processes. It can be involved in a variety of immuno-inflammatory disorders ranging from infections to autoimmunity and cancers. The HLA system is also suggested to be involved in neurodevelopment and neuroplasticity, especially through microglia regulation and synaptic pruning. Consequently, this highly polymorphic gene region has recently emerged as a major player in the etiology of several major psychiatric disorders, such as schizophrenia, autism spectrum disorder and bipolar disorder and with less evidence for major depressive disorders and attention deficit hyperactivity disorder. We thus review here the role of HLA genes in particular subgroups of psychiatric disorders and foresee their potential implication in future research. In particular, given the prominent role that the HLA system plays in the regulation of viral infection, this review is particularly timely in the context of the Covid-19 pandemic.


Subject(s)
HLA Antigens/genetics , Mental Disorders/genetics , Virus Diseases/psychology , Autism Spectrum Disorder/genetics , Bipolar Disorder/genetics , COVID-19/psychology , Genetic Predisposition to Disease/genetics , HLA Antigens/metabolism , Haplotypes/genetics , Humans , Mental Disorders/epidemiology , Pandemics , Polymorphism, Genetic/genetics , SARS-CoV-2/pathogenicity , Schizophrenia/genetics , Virus Diseases/genetics , Virus Diseases/immunology
9.
Evid Based Ment Health ; 23(4): 161-166, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-807683

ABSTRACT

Experiencing continued growth in demand for mental health services among students, colleges are seeking digital solutions to increase access to care as classes shift to remote virtual learning during the COVID-19 pandemic. Using smartphones to capture real-time symptoms and behaviours related to mental illnesses, digital phenotyping offers a practical tool to help colleges remotely monitor and assess mental health and provide more customised and responsive care. This narrative review of 25 digital phenotyping studies with college students explored how this method has been deployed, studied and has impacted mental health outcomes. We found the average duration of studies to be 42 days and the average enrolled to be 81 participants. The most common sensor-based streams collected included location, accelerometer and social information and these were used to inform behaviours such as sleep, exercise and social interactions. 52% of the studies included also collected smartphone survey in some form and these were used to assess mood, anxiety and stress among many other outcomes. The collective focus on data that construct features related to sleep, activity and social interactions indicate that this field is already appropriately attentive to the primary drivers of mental health problems among college students. While the heterogeneity of the methods of these studies presents no reliable target for mobile devices to offer automated help-the feasibility across studies suggests the potential to use these data today towards personalising care. As more unified digital phenotyping research evolves and scales to larger sample sizes, student mental health centres may consider integrating these data into their clinical practice for college students.


Subject(s)
Coronavirus Infections , Mental Disorders/diagnosis , Mental Disorders/genetics , Mental Disorders/therapy , Pandemics , Pneumonia, Viral , Smartphone , Students/psychology , Telemedicine/methods , Adult , Betacoronavirus , Biological Variation, Population , COVID-19 , Female , Humans , Male , Mental Health/statistics & numerical data , Mental Health Services , SARS-CoV-2 , Students/statistics & numerical data , Surveys and Questionnaires , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL